Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum and approximation algorithms for maximum witnesses of Boolean matrix products (2004.14064v3)

Published 29 Apr 2020 in cs.DS

Abstract: The problem of finding maximum (or minimum) witnesses of the Boolean product of two Boolean matrices (MW for short) has a number of important applications, in particular the all-pairs lowest common ancestor (LCA) problem in directed acyclic graphs (dags). The best known upper time-bound on the MW problem for n\times n Boolean matrices of the form O(n{2.575}) has not been substantially improved since 2006. In order to obtain faster algorithms for this problem, we study quantum algorithms for MW and approximation algorithms for MW (in the standard computational model). Some of our quantum algorithms are input or output sensitive. Our fastest quantum algorithm for the MW problem, and consequently for the related problems, runs in time \tilde{O}(n{2+\lambda/2})=\tilde{O}(n{2.434}), where \lambda satisfies the equation \omega(1, \lambda, 1) = 1 + 1.5 \, \lambda and \omega(1, \lambda, 1) is the exponent of the multiplication of an n \times n{\lambda}$ matrix by an n{\lambda} \times n matrix. Next, we consider a relaxed version of the MW problem (in the standard model) asking for reporting a witness of bounded rank (the maximum witness has rank 1) for each non-zero entry of the matrix product. First, by adapting the fastest known algorithm for maximum witnesses, we obtain an algorithm for the relaxed problem that reports for each non-zero entry of the product matrix a witness of rank at most \ell in time \tilde{O}((n/\ell)n{\omega(1,\log_n \ell,1)}). Then, by reducing the relaxed problem to the so called k-witness problem, we provide an algorithm that reports for each non-zero entry C[i,j] of the product matrix C a witness of rank O(\lceil W_C(i,j)/k\rceil ), where W_C(i,j) is the number of witnesses for C[i,j], with high probability. The algorithm runs in \tilde{O}(n{\omega}k{0.4653} +n2k) time, where \omega=\omega(1,1,1).

Citations (2)

Summary

We haven't generated a summary for this paper yet.