Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decomposing Word Embedding with the Capsule Network (2004.13844v2)

Published 7 Apr 2020 in cs.CL

Abstract: Word sense disambiguation tries to learn the appropriate sense of an ambiguous word in a given context. The existing pre-trained language methods and the methods based on multi-embeddings of word did not explore the power of the unsupervised word embedding sufficiently. In this paper, we discuss a capsule network-based approach, taking advantage of capsule's potential for recognizing highly overlapping features and dealing with segmentation. We propose a Capsule network-based method to Decompose the unsupervised word Embedding of an ambiguous word into context specific Sense embedding, called CapsDecE2S. In this approach, the unsupervised ambiguous embedding is fed into capsule network to produce its multiple morpheme-like vectors, which are defined as the basic semantic language units of meaning. With attention operations, CapsDecE2S integrates the word context to reconstruct the multiple morpheme-like vectors into the context-specific sense embedding. To train CapsDecE2S, we propose a sense matching training method. In this method, we convert the sense learning into a binary classification that explicitly learns the relation between senses by the label of matching and non-matching. The CapsDecE2S was experimentally evaluated on two sense learning tasks, i.e., word in context and word sense disambiguation. Results on two public corpora Word-in-Context and English all-words Word Sense Disambiguation show that, the CapsDecE2S model achieves the new state-of-the-art for the word in context and word sense disambiguation tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Xin Liu (820 papers)
  2. Qingcai Chen (36 papers)
  3. Yan Liu (419 papers)
  4. Joanna Siebert (5 papers)
  5. Baotian Hu (67 papers)
  6. Xiangping Wu (22 papers)
  7. Buzhou Tang (18 papers)
Citations (9)