Papers
Topics
Authors
Recent
2000 character limit reached

Residual Channel Attention Generative Adversarial Network for Image Super-Resolution and Noise Reduction

Published 28 Apr 2020 in eess.IV and cs.CV | (2004.13674v1)

Abstract: Image super-resolution is one of the important computer vision techniques aiming to reconstruct high-resolution images from corresponding low-resolution ones. Most recently, deep learning-based approaches have been demonstrated for image super-resolution. However, as the deep networks go deeper, they become more difficult to train and more difficult to restore the finer texture details, especially under real-world settings. In this paper, we propose a Residual Channel Attention-Generative Adversarial Network(RCA-GAN) to solve these problems. Specifically, a novel residual channel attention block is proposed to form RCA-GAN, which consists of a set of residual blocks with shortcut connections, and a channel attention mechanism to model the interdependence and interaction of the feature representations among different channels. Besides, a generative adversarial network (GAN) is employed to further produce realistic and highly detailed results. Benefiting from these improvements, the proposed RCA-GAN yields consistently better visual quality with more detailed and natural textures than baseline models; and achieves comparable or better performance compared with the state-of-the-art methods for real-world image super-resolution.

Citations (25)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.