Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New Developments in Mean Curvature Flow of Arbitrary Codimension Inspired By Yau Rigidity Theory (2004.13607v1)

Published 28 Apr 2020 in math.DG

Abstract: In this survey, we will focus on the mean curvature flow theory with sphere theorems, and discuss the recent developments on the convergence theorems for the mean curvature flow of arbitrary codimension inspired by the Yau rigidity theory of submanifolds. Several new differentiable sphere theorems for submanifolds are obtained as consequences of the convergence theorems for the mean curvature flow. It should be emphasized that Theorem 4.1 is an optimal convergence theorem for the mean curvature flow of arbitrary codimension, which implies the first optimal differentiable sphere theorem for submanifolds with positive Ricci curvature. Finally, we present a list of unsolved problems in this area.

Summary

We haven't generated a summary for this paper yet.