Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the stability of time-discrete dynamic multiple network poroelasticity systems arising from second-order implicit time-stepping schemes (2004.13339v1)

Published 28 Apr 2020 in math.NA and cs.NA

Abstract: The classical Biot's theory provides the foundation of a fully dynamic poroelasticity model describing the propagation of elastic waves in fluid-saturated media. Multiple network poroelastic theory (MPET) takes into account that the elastic matrix (solid) can be permeated by one or several ($n\ge1$) superimposed interacting single fluid networks of possibly different characteristics; hence the single network (classical Biot) model can be considered as a special case of the MPET model. We analyze the stability properties of the time-discrete systems arising from second-order implicit time stepping schemes applied to the variational formulation of the MPET model and prove an inf-sup condition with a constant that is independent of all model parameters. Moreover, we show that the fully discrete models obtained for a family of strongly conservative space discretizations are also uniformly stable with respect to the spatial discretization parameter. The norms in which these results hold are the basis for parameter-robust preconditioners.

Summary

We haven't generated a summary for this paper yet.