Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Distributed Non-convex Optimization: Projected Subgradient Method For Weakly Convex Problems in Networks (2004.13233v2)

Published 28 Apr 2020 in math.OC, cs.LG, and stat.ML

Abstract: The stochastic subgradient method is a widely-used algorithm for solving large-scale optimization problems arising in machine learning. Often these problems are neither smooth nor convex. Recently, Davis et al. [1-2] characterized the convergence of the stochastic subgradient method for the weakly convex case, which encompasses many important applications (e.g., robust phase retrieval, blind deconvolution, biconvex compressive sensing, and dictionary learning). In practice, distributed implementations of the projected stochastic subgradient method (stoDPSM) are used to speed-up risk minimization. In this paper, we propose a distributed implementation of the stochastic subgradient method with a theoretical guarantee. Specifically, we show the global convergence of stoDPSM using the Moreau envelope stationarity measure. Furthermore, under a so-called sharpness condition, we show that deterministic DPSM (with a proper initialization) converges linearly to the sharp minima, using geometrically diminishing step-size. We provide numerical experiments to support our theoretical analysis.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Shixiang Chen (18 papers)
  2. Alfredo Garcia (46 papers)
  3. Shahin Shahrampour (53 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.