Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local Lipschitz Bounds of Deep Neural Networks (2004.13135v3)

Published 27 Apr 2020 in stat.ML, cs.LG, and q-fin.MF

Abstract: The Lipschitz constant is an important quantity that arises in analysing the convergence of gradient-based optimization methods. It is generally unclear how to estimate the Lipschitz constant of a complex model. Thus, this paper studies an important problem that may be useful to the broader area of non-convex optimization. The main result provides a local upper bound on the Lipschitz constants of a multi-layer feed-forward neural network and its gradient. Moreover, lower bounds are established as well, which are used to show that it is impossible to derive global upper bounds for the Lipschitz constants. In contrast to previous works, we compute the Lipschitz constants with respect to the network parameters and not with respect to the inputs. These constants are needed for the theoretical description of many step size schedulers of gradient based optimization schemes and their convergence analysis. The idea is both simple and effective. The results are extended to a generalization of neural networks, continuously deep neural networks, which are described by controlled ODEs.

Citations (2)

Summary

We haven't generated a summary for this paper yet.