Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Effects of Assortativity on Consensus Formation with Heterogeneous Agents (2004.13131v1)

Published 27 Apr 2020 in cs.SI and physics.soc-ph

Abstract: Despite the widespread use of Barabasi's scale-free networks and Erdos-Renyi networks of which degree correlation (assortativity) is neutral, numerous studies demonstrated that online social networks tend to show assortative mixing (positive degree correlation), while non-social networks show a disassortative mixing (negative degree correlation). First, we analyzed the variability in the assortativity coefficients of different groups of the same platform by using three different subreddits in Reddit. Our data analysis results showed that Reddit is disassortative, and assortativity coefficients of the aforementioned subreddits are computed as -0.0384, -0.0588 and -0.1107, respectively. Motivated by the variability in the results even in the same platform, we decided to investigate the sensitivity of dynamics of consensus formation to the assortativity of the network. We concluded that the system is more likely to reach a consensus when the network is disassortatively mixed or neutral; however, the likelihood of the consensus significantly decreases when the network is assortatively mixed. Surprisingly, the time elapsed until all nodes fix their opinions is slightly lower when the network is neutral compared to either assortative or disassortative networks. These results are more pronounced when the thresholds of agents are more heterogeneously distributed.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ece Çiğdem Mutlu (4 papers)
  2. Ivan Garibay (37 papers)
Citations (2)