Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Why should we add early exits to neural networks? (2004.12814v2)

Published 27 Apr 2020 in cs.NE, cs.LG, and stat.ML

Abstract: Deep neural networks are generally designed as a stack of differentiable layers, in which a prediction is obtained only after running the full stack. Recently, some contributions have proposed techniques to endow the networks with early exits, allowing to obtain predictions at intermediate points of the stack. These multi-output networks have a number of advantages, including: (i) significant reductions of the inference time, (ii) reduced tendency to overfitting and vanishing gradients, and (iii) capability of being distributed over multi-tier computation platforms. In addition, they connect to the wider themes of biological plausibility and layered cognitive reasoning. In this paper, we provide a comprehensive introduction to this family of neural networks, by describing in a unified fashion the way these architectures can be designed, trained, and actually deployed in time-constrained scenarios. We also describe in-depth their application scenarios in 5G and Fog computing environments, as long as some of the open research questions connected to them.

Citations (104)

Summary

We haven't generated a summary for this paper yet.