Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A novel multimodal approach for hybrid brain-computer interface (2004.12081v1)

Published 25 Apr 2020 in cs.HC and eess.SP

Abstract: Brain-computer interface (BCI) technologies have been widely used in many areas. In particular, non-invasive technologies such as electroencephalography (EEG) or near-infrared spectroscopy (NIRS) have been used to detect motor imagery, disease, or mental state. It has been already shown in literature that the hybrid of EEG and NIRS has better results than their respective individual signals. The fusion algorithm for EEG and NIRS sources is the key to implement them in real-life applications. In this research, we propose three fusion methods for the hybrid of the EEG and NIRS-based brain-computer interface system: linear fusion, tensor fusion, and $p$th-order polynomial fusion. Firstly, our results prove that the hybrid BCI system is more accurate, as expected. Secondly, the $p$th-order polynomial fusion has the best classification results out of the three methods, and also shows improvements compared with previous studies. For a motion imagery task and a mental arithmetic task, the best detection accuracy in previous papers were 74.20\% and 88.1\%, whereas our accuracy achieved was 77.53\% and 90.19\% . Furthermore, unlike complex artificial neural network methods, our proposed methods are not as computationally demanding.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zhe Sun (112 papers)
  2. Zihao Huang (42 papers)
  3. Feng Duan (8 papers)
  4. Yu Liu (786 papers)
Citations (32)

Summary

We haven't generated a summary for this paper yet.