Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Skewed non-Gaussian GARCH models for cryptocurrencies volatility modelling (2004.11674v1)

Published 22 Apr 2020 in q-fin.ST

Abstract: Recently, cryptocurrencies have attracted a growing interest from investors, practitioners and researchers. Nevertheless, few studies have focused on the predictability of them. In this paper we propose a new and comprehensive study about cryptocurrency market, evaluating the forecasting performance for three of the most important cryptocurrencies (Bitcoin, Ethereum and Litecoin) in terms of market capitalization. At this aim, we consider non-Gaussian GARCH volatility models, which form a class of stochastic recursive systems commonly adopted for financial predictions. Results show that the best specification and forecasting accuracy are achieved under the Skewed Generalized Error Distribution when Bitcoin/USD and Litecoin/USD exchange rates are considered, while the best performances are obtained for skewed Distribution in the case of Ethereum/USD exchange rate. The obtain findings state the effectiveness -- in terms of prediction performance -- of relaxing the normality assumption and considering skewed distributions.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com