Papers
Topics
Authors
Recent
2000 character limit reached

QURIOUS: Question Generation Pretraining for Text Generation

Published 23 Apr 2020 in cs.CL | (2004.11026v1)

Abstract: Recent trends in natural language processing using pretraining have shifted focus towards pretraining and fine-tuning approaches for text generation. Often the focus has been on task-agnostic approaches that generalize the language modeling objective. We propose question generation as a pretraining method, which better aligns with the text generation objectives. Our text generation models pretrained with this method are better at understanding the essence of the input and are better LLMs for the target task. When evaluated on two text generation tasks, abstractive summarization and answer-focused question generation, our models result in state-of-the-art performances in terms of automatic metrics. Human evaluators also found our summaries and generated questions to be more natural, concise and informative.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.