Papers
Topics
Authors
Recent
2000 character limit reached

Derivatives of symplectic eigenvalues and a Lidskii type theorem

Published 23 Apr 2020 in math.FA | (2004.11024v1)

Abstract: Associated with every $2n\times 2n$ real positive definite matrix $A,$ there exist $n$ positive numbers called the symplectic eigenvalues of $A,$ and a basis of $\mathbb{R}{2n}$ called the symplectic eigenbasis of $A$ corresponding to these numbers. In this paper, we discuss the differentiability (analyticity) of the symplectic eigenvalues and corresponding symplectic eigenbasis for differentiable (analytic) map $t\mapsto A(t),$ and compute their derivatives. We then derive an analogue of Lidskii's theorem for symplectic eigenvalues as an application.

Citations (23)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.