Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 105 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 45 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 218 tok/s Pro
2000 character limit reached

The Universal de Rham/Spencer Double Complex on a Supermanifold (2004.10906v2)

Published 22 Apr 2020 in math.AG, math-ph, math.MP, and math.QA

Abstract: The universal Spencer and de Rham complexes of sheaves over a smooth or analytical manifold are well known to play a basic role in the theory of $\mathcal{D}$-modules. In this article we consider a double complex of sheaves generalizing both complexes for an arbitrary supermanifold, and we use it to unify the notions of differential and integral forms on real, complex and algebraic supermanifolds. The associated spectral sequences give the de Rham complex of differential forms and the complex of integral forms at page one. For real and complex supermanifolds both spectral sequences converge at page two to the locally constant sheaf. We use this fact to show that the cohomology of differential forms is isomorphic to the cohomology of integral forms, and they both compute the de Rham cohomology of the reduced manifold. Furthermore, we show that, in contrast with the case of ordinary complex manifolds, the Hodge-to-de Rham (or Fr\"olicher) spectral sequence of supermanifolds with K\"ahler reduced manifold does not converge in general at page one.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.