Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some variations of a "divergent" Ramanujan-type $q$-supercongruence (2004.10526v1)

Published 20 Apr 2020 in math.NT and math.CO

Abstract: Using the $q$-Wilf--Zeilberger method and a $q$-analogue of a "divergent" Ramanujan-type supercongruence, we give several $q$-supercongruences modulo the fourth power of a cyclotomic polynomial. One of them is a $q$-analogue of a supercongruence recently proved by Wang: for any prime $p>3$, $$ \sum_{k=0}{p-1} (3k-1)\frac{(\frac{1}{2})_k (-\frac{1}{2})_k2 }{k!3}4k\equiv p-2p3 \pmod{p4}, $$ where $(a)_k=a(a+1)\cdots (a+k-1)$ is the Pochhammer symbol.

Summary

We haven't generated a summary for this paper yet.