Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Trading Off Diversity and Quality in Natural Language Generation (2004.10450v1)

Published 22 Apr 2020 in cs.CL

Abstract: For open-ended language generation tasks such as storytelling and dialogue, choosing the right decoding algorithm is critical to controlling the tradeoff between generation quality and diversity. However, there presently exists no consensus on which decoding procedure is best or even the criteria by which to compare them. We address these issues by casting decoding as a multi-objective optimization problem aiming to simultaneously maximize both response quality and diversity. Our framework enables us to perform the first large-scale evaluation of decoding methods along the entire quality-diversity spectrum. We find that when diversity is a priority, all methods perform similarly, but when quality is viewed as more important, the recently proposed nucleus sampling (Holtzman et al. 2019) outperforms all other evaluated decoding algorithms. Our experiments also confirm the existence of the `likelihood trap', the counter-intuitive observation that high likelihood sequences are often surprisingly low quality. We leverage our findings to create and evaluate an algorithm called \emph{selective sampling} which tractably approximates globally-normalized temperature sampling.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Hugh Zhang (13 papers)
  2. Daniel Duckworth (20 papers)
  3. Daphne Ippolito (47 papers)
  4. Arvind Neelakantan (20 papers)
Citations (81)