Papers
Topics
Authors
Recent
Search
2000 character limit reached

Residual Energy-Based Models for Text

Published 6 Apr 2020 in cs.CL, cs.LG, and stat.ML | (2004.10188v2)

Abstract: Current large-scale auto-regressive LLMs display impressive fluency and can generate convincing text. In this work we start by asking the question: Can the generations of these models be reliably distinguished from real text by statistical discriminators? We find experimentally that the answer is affirmative when we have access to the training data for the model, and guardedly affirmative even if we do not. This suggests that the auto-regressive models can be improved by incorporating the (globally normalized) discriminators into the generative process. We give a formalism for this using the Energy-Based Model framework, and show that it indeed improves the results of the generative models, measured both in terms of perplexity and in terms of human evaluation.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.