Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A category theoretical argument for causal inference (2004.09999v2)

Published 9 Apr 2020 in math.ST, cs.AI, math.AG, math.CT, and stat.TH

Abstract: The goal of this paper is to design a causal inference method accounting for complex interactions between causal factors. The proposed method relies on a category theoretical reformulation of the definitions of dependent variables, independent variables and latent variables in terms of products and arrows in the category of unlabeled partitions. Throughout the paper, we demonstrate how the proposed method accounts for possible hidden variables, such as environmental variables or noise, and how it can be interpreted statistically in terms of $p$-values. This interpretation, from category theory to statistics, is implemented through a collection of propositions highlighting the functorial properties of ANOVA. We use these properties in combination with our category theoretical framework to provide solutions to causal inference problems with both sound algebraic and statistical properties. As an application, we show how the proposed method can be used to design a combinatorial genome-wide association algorithm for the field of genetics.

Summary

We haven't generated a summary for this paper yet.