Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A novel embedded min-max approach for feature selection in nonlinear support vector machine classification (2004.09863v4)

Published 21 Apr 2020 in cs.LG, math.OC, and stat.ML

Abstract: In recent years, feature selection has become a challenging problem in several machine learning fields, such as classification problems. Support Vector Machine (SVM) is a well-known technique applied in classification tasks. Various methodologies have been proposed in the literature to select the most relevant features in SVM. Unfortunately, all of them either deal with the feature selection problem in the linear classification setting or propose ad-hoc approaches that are difficult to implement in practice. In contrast, we propose an embedded feature selection method based on a min-max optimization problem, where a trade-off between model complexity and classification accuracy is sought. By leveraging duality theory, we equivalently reformulate the min-max problem and solve it without further ado using off-the-shelf software for nonlinear optimization. The efficiency and usefulness of our approach are tested on several benchmark data sets in terms of accuracy, number of selected features and interpretability.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (65)

Summary

We haven't generated a summary for this paper yet.