Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-Driven Learning and Load Ensemble Control (2004.09675v1)

Published 20 Apr 2020 in eess.SY, cs.LG, and cs.SY

Abstract: Demand response (DR) programs aim to engage distributed small-scale flexible loads, such as thermostatically controllable loads (TCLs), to provide various grid support services. Linearly Solvable Markov Decision Process (LS-MDP), a variant of the traditional MDP, is used to model aggregated TCLs. Then, a model-free reinforcement learning technique called Z-learning is applied to learn the value function and derive the optimal policy for the DR aggregator to control TCLs. The learning process is robust against uncertainty that arises from estimating the passive dynamics of the aggregated TCLs. The efficiency of this data-driven learning is demonstrated through simulations on Heating, Cooling & Ventilation (HVAC) units in a testbed neighborhood of residential houses.

Citations (6)

Summary

We haven't generated a summary for this paper yet.