Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating the Probability that a Vehicle Reaches a Near-Term Goal State Using Multiple Lane Changes (2004.09558v2)

Published 20 Apr 2020 in cs.RO

Abstract: This paper proposes a model to estimate the probability of a vehicle reaching a near-term goal state using one or multiple lane changes based on parameters corresponding to traffic conditions and driving behavior. The proposed model not only has broad application in path planning and autonomous vehicle navigation, it can also be incorporated in advance warning systems to reduce traffic delay during recurrent and non-recurrent congestion. The model is first formulated for a two-lane road segment through systemic reduction of the number of parameters and transforming the problem into an abstract statistical form, for which the probability can be calculated numerically. It is then extended to cases with a higher number of lanes using the law of total probability. VISSIM simulations are used to validate the predictions of the model and study the effect of different parameters on the probability. For most cases, simulation results are within 4% of model predictions, and the effect of different parameters such as driving behavior and traffic density on the probability match our expectation. The model can be implemented with near real-time performance, with computation time increasing linearly with the number of lanes.

Citations (5)

Summary

We haven't generated a summary for this paper yet.