Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nehari manifold for fractional p(.)-Laplacian system involving concave-convex nonlinearities (2004.09451v1)

Published 20 Apr 2020 in math.AP

Abstract: In this article using Nehari manifold method we study the multiplicity of solutions of the following nonlocal elliptic system involving variable exponents and concave-convex nonlinearities: \begin{equation*} \;\;\; \begin{array}{rl} (-\Delta){p(\cdot)}{s} u&=\lambda~ a(x)| u|{q(x)-2}u+\frac{\alpha(x)}{\alpha(x)+\beta(x)}c(x)| u|{\alpha(x)-2}u| v| {\beta(x)},\hspace{2mm} x\in \Omega; \ (-\Delta){p(\cdot)}{s} v&=\mu~ b(x)| v|{q(x)-2}v+\frac{\alpha(x)}{\alpha(x)+\beta(x)}c(x)| v|{\alpha(x)-2}v| u| {\beta(x)},\hspace{2.5mm} x\in \Omega; \ u=v&=0 ,\hspace{1cm} x\in \Omegac:=\mathbb RN\setminus\Omega, \end{array} \end{equation*} where $\Omega\subset\mathbb RN,~N\geq2$ is a smooth bounded domain, $\lambda,\mu>0$ are the parameters, $s\in(0,1),$ $p\in C(\mathbb RN\times \mathbb RN,(1,\infty))$ and $q,\alpha,\beta\in C(\overline{\Omega},(1,\infty))$ are the variable exponents and $a,b,c\in C(\overline{\Omega},[0,\infty))$ are the non-negative weight functions. We show that there exists $\Lambda>0$ such that for all $\lambda+\mu<\Lambda$, there exist two non-trivial and non-negative solutions of the above problem under some assumptions on $q,\alpha,\beta$.

Summary

We haven't generated a summary for this paper yet.