Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral theory of fluctuations in time-average statistical mechanics of reversible and driven systems (2004.09387v2)

Published 20 Apr 2020 in cond-mat.stat-mech, math-ph, math.MP, and math.PR

Abstract: We present a spectral-theoretic approach to time-average statistical mechanics for general, non-equilibrium initial conditions. We consider the statistics of bounded, local additive functionals of reversible as well as irreversible ergodic stochastic dynamics with continuous or discrete state-space. We derive exact results for the mean, fluctuations and correlations of time average observables from the eigenspectrum of the underlying generator of Fokker-Planck or master equation dynamics, and discuss the results from a physical perspective. Feynman-Kac formulas are re-derived using It^o calculus and combined with non-Hermitian perturbation theory. The emergence of the universal central limit law in a spectral representation is shown explicitly on large deviation time-scales. For reversible dynamics with equilibrated initial conditions we derive a general upper bound to fluctuations of occupation measures in terms of an integral of the return probability. Simple, exactly solvable examples are analyzed to demonstrate how to apply the theory. As a biophysical example we revisit the Berg-Purcell problem on the precision of concentration measurements by a single receptor. Our results are directly applicable to a diverse range of phenomena underpinned by time-average observables and additive functionals in physical, chemical, biological, and economical systems.

Summary

We haven't generated a summary for this paper yet.