Topological Quantum Walk with Discrete Time-Glide Symmetry (2004.09332v3)
Abstract: Discrete quantum walks are periodically driven systems with discrete time evolution. In contrast to ordinary Floquet systems, no microscopic Hamiltonian exists, and the one-period time evolution is given directly by a series of unitary operators. Regarding each constituent unitary operator as a discrete time step, we formulate discrete space-time symmetry in quantum walks and evaluate the corresponding symmetry protected topological phases. In particular, we study chiral and/or time-glide symmetric topological quantum walks in this formalism. Due to discrete nature of time evolution,the topological classification is found to be different from that in conventional Floquet systems. As a concrete example, we study a two-dimensional quantum walk having both chiral and time-glide symmetries, and identify the anomalous edge states protected by these symmetries.