Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Residual-type a posteriori error analysis of HDG methods for Neumann boundary control problems (2004.09319v1)

Published 20 Apr 2020 in math.NA, cs.NA, and math.OC

Abstract: We study a posteriori error analysis of linear-quadratic boundary control problems under bilateral box constraints on the control which acts through a Neumann type boundary condition. We adopt the hybridizable discontinuous Galerkin method as discretization technique, and the flux variables, the scalar variables and the boundary trace variables are all approximated by polynomials of degree k. As for the control variable, it is discretized by the variational discretization concept. Then an efficient and reliable a posteriori error estimator is introduced, and we prove that the error estimator provides an upper bound and a lower bound for the error. Finally, numerical results are presented to illustrate the performance of the obtained a posteriori error estimator.

Citations (7)

Summary

We haven't generated a summary for this paper yet.