Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Segal's Gamma rings and universal arithmetic (2004.08879v1)

Published 19 Apr 2020 in math.AG and math.AT

Abstract: Segal's Gamma-rings provide a natural framework for absolute algebraic geometry. We use Almkvist's global Witt construction to explore the relation with J. Borger F1-geometry and compute the Witt functor-ring of Almkvist for the simplest Gamma-ring S. We prove that it is isomorphic to the Galois invariant part of the BC-system, and exhibit the close relation between Lambda-rings and the Arithmetic site. Then, we concentrate on the Arakelov compactification of Z which acquires a structure sheaf of S-algebras. After supplying a probabilistic interpretation of the classical theta invariant of a divisor D, we show how to associate to D a Gamma-space that encodes, in homotopical terms, the Riemann-Roch problem for D.

Summary

We haven't generated a summary for this paper yet.