Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Universal Approximation Theorem of Deep Neural Networks for Expressing Probability Distributions (2004.08867v3)

Published 19 Apr 2020 in cs.LG, cs.NA, math.NA, math.ST, stat.ML, and stat.TH

Abstract: This paper studies the universal approximation property of deep neural networks for representing probability distributions. Given a target distribution $\pi$ and a source distribution $p_z$ both defined on $\mathbb{R}d$, we prove under some assumptions that there exists a deep neural network $g:\mathbb{R}d\rightarrow \mathbb{R}$ with ReLU activation such that the push-forward measure $(\nabla g)_# p_z$ of $p_z$ under the map $\nabla g$ is arbitrarily close to the target measure $\pi$. The closeness are measured by three classes of integral probability metrics between probability distributions: $1$-Wasserstein distance, maximum mean distance (MMD) and kernelized Stein discrepancy (KSD). We prove upper bounds for the size (width and depth) of the deep neural network in terms of the dimension $d$ and the approximation error $\varepsilon$ with respect to the three discrepancies. In particular, the size of neural network can grow exponentially in $d$ when $1$-Wasserstein distance is used as the discrepancy, whereas for both MMD and KSD the size of neural network only depends on $d$ at most polynomially. Our proof relies on convergence estimates of empirical measures under aforementioned discrepancies and semi-discrete optimal transport.

Citations (19)

Summary

We haven't generated a summary for this paper yet.