Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Time Series Data Cleaning with Regular and Irregular Time Intervals (2004.08284v3)

Published 17 Apr 2020 in cs.DB

Abstract: Errors are prevalent in time series data, especially in the industrial field. Data with errors could not be stored in the database, which results in the loss of data assets. Handling the dirty data in time series is non-trivial, when given irregular time intervals. At present, to deal with these time series containing errors, besides keeping original erroneous data, discarding erroneous data and manually checking erroneous data, we can also use the cleaning algorithm widely used in the database to automatically clean the time series data. This survey provides a classification of time series data cleaning techniques and comprehensively reviews the state-of-the-art methods of each type. In particular, we have a special focus on the irregular time intervals. Besides we summarize data cleaning tools, systems and evaluation criteria from research and industry. Finally, we highlight possible directions time series data cleaning.

Citations (72)

Summary

We haven't generated a summary for this paper yet.