Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Image Processing Based Scene-Text Detection and Recognition with Tesseract (2004.08079v1)

Published 17 Apr 2020 in cs.CV

Abstract: Text Recognition is one of the challenging tasks of computer vision with considerable practical interest. Optical character recognition (OCR) enables different applications for automation. This project focuses on word detection and recognition in natural images. In comparison to reading text in scanned documents, the targeted problem is significantly more challenging. The use case in focus facilitates the possibility to detect the text area in natural scenes with greater accuracy because of the availability of images under constraints. This is achieved using a camera mounted on a truck capturing likewise images round-the-clock. The detected text area is then recognized using Tesseract OCR engine. Even though it benefits low computational power requirements, the model is limited to only specific use cases. This paper discusses a critical false positive case scenario occurred while testing and elaborates the strategy used to alleviate the problem. The project achieved a correct character recognition rate of more than 80\%. This paper outlines the stages of development, the major challenges and some of the interesting findings of the project.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ebin Zacharias (2 papers)
  2. Martin Teuchler (2 papers)
  3. Bénédicte Bernier (1 paper)
Citations (15)

Summary

We haven't generated a summary for this paper yet.