Papers
Topics
Authors
Recent
2000 character limit reached

OptiGAN: Generative Adversarial Networks for Goal Optimized Sequence Generation

Published 16 Apr 2020 in cs.LG and stat.ML | (2004.07534v10)

Abstract: One of the challenging problems in sequence generation tasks is the optimized generation of sequences with specific desired goals. Current sequential generative models mainly generate sequences to closely mimic the training data, without direct optimization of desired goals or properties specific to the task. We introduce OptiGAN, a generative model that incorporates both Generative Adversarial Networks (GAN) and Reinforcement Learning (RL) to optimize desired goal scores using policy gradients. We apply our model to text and real-valued sequence generation, where our model is able to achieve higher desired scores out-performing GAN and RL baselines, while not sacrificing output sample diversity.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.