Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An automatic COVID-19 CT segmentation network using spatial and channel attention mechanism (2004.06673v4)

Published 14 Apr 2020 in eess.IV, cs.CV, and cs.LG

Abstract: The coronavirus disease (COVID-19) pandemic has led to a devastating effect on the global public health. Computed Tomography (CT) is an effective tool in the screening of COVID-19. It is of great importance to rapidly and accurately segment COVID-19 from CT to help diagnostic and patient monitoring. In this paper, we propose a U-Net based segmentation network using attention mechanism. As not all the features extracted from the encoders are useful for segmentation, we propose to incorporate an attention mechanism including a spatial and a channel attention, to a U-Net architecture to re-weight the feature representation spatially and channel-wise to capture rich contextual relationships for better feature representation. In addition, the focal tversky loss is introduced to deal with small lesion segmentation. The experiment results, evaluated on a COVID-19 CT segmentation dataset where 473 CT slices are available, demonstrate the proposed method can achieve an accurate and rapid segmentation on COVID-19 segmentation. The method takes only 0.29 second to segment a single CT slice. The obtained Dice Score, Sensitivity and Specificity are 83.1%, 86.7% and 99.3%, respectively.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Tongxue Zhou (9 papers)
  2. Su Ruan (40 papers)
  3. Stéphane Canu (23 papers)
Citations (54)

Summary

We haven't generated a summary for this paper yet.