Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-source Attention for Unsupervised Domain Adaptation (2004.06608v2)

Published 14 Apr 2020 in cs.CL and cs.LG

Abstract: Domain adaptation considers the problem of generalising a model learnt using data from a particular source domain to a different target domain. Often it is difficult to find a suitable single source to adapt from, and one must consider multiple sources. Using an unrelated source can result in sub-optimal performance, known as the \emph{negative transfer}. However, it is challenging to select the appropriate source(s) for classifying a given target instance in multi-source unsupervised domain adaptation (UDA). We model source-selection as an attention-learning problem, where we learn attention over sources for a given target instance. For this purpose, we first independently learn source-specific classification models, and a relatedness map between sources and target domains using pseudo-labelled target domain instances. Next, we learn attention-weights over the sources for aggregating the predictions of the source-specific models. Experimental results on cross-domain sentiment classification benchmarks show that the proposed method outperforms prior proposals in multi-source UDA.

Citations (9)

Summary

We haven't generated a summary for this paper yet.