Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
11 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
34 tokens/sec
2000 character limit reached

Bayesian Consensus: Consensus Estimates from Miscalibrated Instruments under Heteroscedastic Noise (2004.06565v2)

Published 14 Apr 2020 in q-fin.ST, cs.LG, stat.AP, and stat.ML

Abstract: We consider the problem of aggregating predictions or measurements from a set of human forecasters, models, sensors or other instruments which may be subject to bias or miscalibration and random heteroscedastic noise. We propose a Bayesian consensus estimator that adjusts for miscalibration and noise and show that this estimator is unbiased and asymptotically more efficient than naive alternatives. We further propose a Hierarchical Bayesian Model that leverages our proposed estimator and apply it to two real world forecasting challenges that require consensus estimates from error prone individual estimates: forecasting influenza like illness (ILI) weekly percentages and forecasting annual earnings of public companies. We demonstrate that our approach is effective at mitigating bias and error and results in more accurate forecasts than existing consensus models.

Summary

We haven't generated a summary for this paper yet.