Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A robust network architecture to detect normal chest X-ray radiographs (2004.06147v1)

Published 13 Apr 2020 in eess.IV

Abstract: We propose a novel deep neural network architecture for normalcy detection in chest X-ray images. This architecture treats the problem as fine-grained binary classification in which the normal cases are well-defined as a class while leaving all other cases in the broad class of abnormal. It employs several components that allow generalization and prevent overfitting across demographics. The model is trained and validated on a large public dataset of frontal chest X-ray images. It is then tested independently on images from a clinical institution of differing patient demographics using a three radiologist consensus for ground truth labeling. The model provides an area under ROC curve of 0.96 when tested on 1271 images. We can automatically remove nearly a third of disease-free chest X-ray screening images from the workflow, without introducing any false negatives (100% sensitivity to disease) thus raising the potential of expediting radiology workflows in hospitals in future.

Citations (8)

Summary

We haven't generated a summary for this paper yet.