Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Spatial Relationships between Samples of Patent Image Shapes (2004.05713v3)

Published 12 Apr 2020 in cs.CV

Abstract: Binary image based classification and retrieval of documents of an intellectual nature is a very challenging problem. Variations in the binary image generation mechanisms which are subject to the document artisan designer including drawing style, view-point, inclusion of multiple image components are plausible causes for increasing the complexity of the problem. In this work, we propose a method suitable to binary images which bridges some of the successes of deep learning (DL) to alleviate the problems introduced by the aforementioned variations. The method consists on extracting the shape of interest from the binary image and applying a non-Euclidean geometric neural-net architecture to learn the local and global spatial relationships of the shape. Empirical results show that our method is in some sense invariant to the image generation mechanism variations and achieves results outperforming existing methods in a patent image dataset benchmark.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Juan Castorena (12 papers)
  2. Manish Bhattarai (38 papers)
  3. Diane Oyen (22 papers)

Summary

We haven't generated a summary for this paper yet.