Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A local energy estimate for wave equations on metrics asymptotically close to Kerr (2004.05664v1)

Published 12 Apr 2020 in math.AP

Abstract: In this article we prove a local energy estimate for the linear wave equation on metrics with slow decay to a Kerr metric with small angular momentum. As an application, we study the quasilinear wave equation $\Box_{g(u, t, x)} u = 0$ where the metric $g(u, t, x)$ is close (and asymptotically equal)to a Kerr metric with small angular momentum $g(0,t,x)$. Under suitable assumptions on the metric coefficients, and assuming that the initial data for $u$ is small enough, we prove global existence and decay of the solution $u$.

Summary

We haven't generated a summary for this paper yet.