Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized selection problem with Lévy noise (2004.05421v1)

Published 11 Apr 2020 in math.PR

Abstract: Let $A_\pm>0$, $\beta\in(0,1)$, and let $Z{(\alpha)}$ be a strictly $\alpha$-stable L\'evy process with the jump measure $\nu(\mathrm{d} z)=(C_+\mathbb{I}{(0,\infty)}(z)+ C-\mathbb{I}{(-\infty,0)}(z))|z|{-1-\alpha}\,\mathrm{d} z$, $\alpha\in (1,2)$, $C\pm\geq 0$, $C_++C_->0$. The selection problem for the model stochastic differential equation $\mathrm{d} \bar X\varepsilon=(A_+\mathbb{I}_{[0,\infty)}(\bar X\varepsilon) - A_-\mathbb{I}{(-\infty,0)}(\bar X\varepsilon))|\bar X\varepsilon|\beta \,\mathrm{d} t +\varepsilon \mathrm{d} Z{(\alpha)}$ states that in the small noise limit $\varepsilon\to 0$, solutions $\bar X\varepsilon$ converge weakly to the maximal or minimal solutions of the limiting non-Lipschitzian ordinary differential equation $\mathrm{d} \bar x=(A+\mathbb{I}{[0,\infty)}(\bar x)- A-\mathbb{I}{(\infty,0)}(\bar x))|\bar x|\beta \,\mathrm{d} t$ with probabilities $\bar p\pm=\bar p_\pm(\alpha,C_+/C_-,\beta, A_+/A_-)$, see [Pilipenko and Proske, Stat. Probab. Lett., 132:62-73, 2018]. In this paper we solve the generalized selection problem for the stochastic differential equation $\mathrm{d} X\varepsilon=a(X\varepsilon)\,\mathrm{d} t+\varepsilon b(X\varepsilon)\,\mathrm{d} Z$ whose dynamics in the vicinity of the origin in certain sense reminds of dynamics of the model equation. In particular we show that solutions $X\varepsilon$ also converge to the maximal or minimal solutions of the limiting irregular ordinary differential equation $\mathrm{d} x=a(x) \,\mathrm{d} t$ with the same model selection probabilities $\bar p_\pm$. This means that for a large class of irregular stochastic differential equations, the selection dynamics is completely determined by four local parameters of the drift and the jump measure.

Summary

We haven't generated a summary for this paper yet.