Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A multi-resolution approximation via linear projection for large spatial datasets (2004.05102v2)

Published 10 Apr 2020 in stat.ME and stat.CO

Abstract: Recent technical advances in collecting spatial data have been increasing the demand for methods to analyze large spatial datasets. The statistical analysis for these types of datasets can provide useful knowledge in various fields. However, conventional spatial statistical methods, such as maximum likelihood estimation and kriging, are impractically time-consuming for large spatial datasets due to the necessary matrix inversions. To cope with this problem, we propose a multi-resolution approximation via linear projection ($M$-RA-lp). The $M$-RA-lp conducts a linear projection approach on each subregion whenever a spatial domain is subdivided, which leads to an approximated covariance function capturing both the large- and small-scale spatial variations. Moreover, we elicit the algorithms for fast computation of the log-likelihood function and predictive distribution with the approximated covariance function obtained by the $M$-RA-lp. Simulation studies and a real data analysis for air dose rates demonstrate that our proposed $M$-RA-lp works well relative to the related existing methods.

Summary

We haven't generated a summary for this paper yet.