Braid group action on the module category of quantum affine algebras (2004.04939v1)
Abstract: Let $\mathfrak{g}0$ be a simple Lie algebra of type ADE and let $U'_q(\mathfrak{g})$ be the corresponding untwisted quantum affine algebra. We show that there exists an action of the braid group $B(\mathfrak{g}_0)$ on the quantum Grothendieck ring $K_t(\mathfrak{g})$ of Hernandez-Leclerc's category $C{\mathfrak{g}}0$. Focused on the case of type $A_{N-1}$, we construct a family of monoidal autofunctors ${\mathscr{S}i}{i\in \mathbb{Z}}$ on a localization $T_N$ of the category of finite-dimensional graded modules over the quiver Hecke algebra of type $A_{\infty}$. Under an isomorphism between the Grothendieck ring $K(T_N)$ of $T_N$ and the quantum Grothendieck ring $K_t({A{(1)}_{N-1}})$, the functors ${\mathscr{S}i}{1\le i\le N-1}$ recover the action of the braid group $B(A_{N-1})$. We investigate further properties of these functors.