Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Secret Sharing based Secure Regressions with Applications (2004.04898v1)

Published 10 Apr 2020 in cs.LG, cs.CR, and stat.ML

Abstract: Nowadays, the utilization of the ever expanding amount of data has made a huge impact on web technologies while also causing various types of security concerns. On one hand, potential gains are highly anticipated if different organizations could somehow collaboratively share their data for technological improvements. On the other hand, data security concerns may arise for both data holders and data providers due to commercial or sociological concerns. To make a balance between technical improvements and security limitations, we implement secure and scalable protocols for multiple data holders to train linear regression and logistic regression models. We build our protocols based on the secret sharing scheme, which is scalable and efficient in applications. Moreover, our proposed paradigm can be generalized to any secure multiparty training scenarios where only matrix summation and matrix multiplications are used. We demonstrate our approach by experiments which shows the scalability and efficiency of our proposed protocols, and finally present its real-world applications.

Citations (4)

Summary

We haven't generated a summary for this paper yet.