Random perturbation of sparse graphs (2004.04672v1)
Abstract: In the model of randomly perturbed graphs we consider the union of a deterministic graph $\mathcal{G}\alpha$ with minimum degree $\alpha n$ and the binomial random graph $\mathbb{G}(n,p)$. This model was introduced by Bohman, Frieze, and Martin and for Hamilton cycles their result bridges the gap between Dirac's theorem and the results by Pos\'{a} and Kor\v{s}unov on the threshold in $\mathbb{G}(n,p)$. In this note we extend this result in $\mathcal{G}\alpha \cup \mathbb{G}(n,p)$ to sparser graphs with $\alpha=o(1)$. More precisely, for any $\varepsilon>0$ and $\alpha \colon \mathbb{N} \mapsto (0,1)$ we show that a.a.s. $\mathcal{G}_\alpha \cup \mathbb{G}(n,\beta /n)$ is Hamiltonian, where $\beta = -(6 + \varepsilon) \log(\alpha)$. If $\alpha>0$ is a fixed constant this gives the aforementioned result by Bohman, Frieze, and Martin and if $\alpha=O(1/n)$ the random part $\mathbb{G}(n,p)$ is sufficient for a Hamilton cycle. We also discuss embeddings of bounded degree trees and other spanning structures in this model, which lead to interesting questions on almost spanning embeddings into $\mathbb{G}(n,p)$.