Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CovidSens: A Vision on Reliable Social Sensing for COVID-19 (2004.04565v3)

Published 9 Apr 2020 in cs.SI, physics.soc-ph, q-bio.PE, and stat.ML

Abstract: With the spiraling pandemic of the Coronavirus Disease 2019 (COVID-19), it has becoming inherently important to disseminate accurate and timely information about the disease. Due to the ubiquity of Internet connectivity and smart devices, social sensing is emerging as a dynamic AI-driven sensing paradigm to extract real-time observations from online users. In this paper, we propose CovidSens, a vision of social sensing based risk alert systems to spontaneously obtain and analyze social data to infer COVID-19 propagation. CovidSens can actively help to keep the general public informed about the COVID-19 spread and identify risk-prone areas. The CovidSens concept is motivated by three observations: 1) people actively share their experience of COVID-19 via online social media, 2) official warning channels and news agencies are relatively slower than people reporting on social media, and 3) online users are frequently equipped with powerful mobile devices that can perform data processing and analytics. We envision unprecedented opportunities to leverage posts generated by ordinary people to build real-time sensing and analytic system for gathering and circulating COVID-19 propagation data. Specifically, the vision of CovidSens attempts to answer the questions: How to distill reliable information on COVID-19 with prevailing rumors and misinformation? How to inform the general public about the state of the spread timely and effectively? How to leverage the computational power on edge devices to construct fully integrated edge-based social sensing platforms? In this vision paper, we discuss the roles of CovidSens and identify potential challenges in developing reliable social sensing based risk alert systems. We envision that approaches originating from multiple disciplines can be effective in addressing the challenges. Finally, we outline a few research directions for future work in CovidSens.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Md Tahmid Rashid (3 papers)
  2. Dong Wang (628 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.