Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interpretability Analysis for Named Entity Recognition to Understand System Predictions and How They Can Improve (2004.04564v2)

Published 9 Apr 2020 in cs.CL

Abstract: Named Entity Recognition systems achieve remarkable performance on domains such as English news. It is natural to ask: What are these models actually learning to achieve this? Are they merely memorizing the names themselves? Or are they capable of interpreting the text and inferring the correct entity type from the linguistic context? We examine these questions by contrasting the performance of several variants of LSTM-CRF architectures for named entity recognition, with some provided only representations of the context as features. We also perform similar experiments for BERT. We find that context representations do contribute to system performance, but that the main factor driving high performance is learning the name tokens themselves. We enlist human annotators to evaluate the feasibility of inferring entity types from the context alone and find that, while people are not able to infer the entity type either for the majority of the errors made by the context-only system, there is some room for improvement. A system should be able to recognize any name in a predictive context correctly and our experiments indicate that current systems may be further improved by such capability.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Oshin Agarwal (9 papers)
  2. Yinfei Yang (73 papers)
  3. Byron C. Wallace (82 papers)
  4. Ani Nenkova (26 papers)
Citations (37)