Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system (2004.04448v1)

Published 9 Apr 2020 in math.NA, cs.NA, and math.OC

Abstract: In this paper we investigate a priori error estimates for the space-time Galerkin finite element discretization of an optimal control problem governed by a simplified linear gradient enhanced damage model. The model equations are of a special structure as the state equation consists of an elliptic PDE which has to be fulfilled at almost all times coupled with an ODE that has to hold true in almost all points in space. The state equation is discretized by a piecewise constant discontinuous Galerkin method in time and usual conforming linear finite elements in space. For the discretization of the control we employ the same discretization technique which turns out to be equivalent to a variational discretization approach. We provide error estimates of optimal order both for the discretization of the state equation as well as for the optimal control. Numerical experiments are added to illustrate the proven rates of convergence.

Citations (3)

Summary

We haven't generated a summary for this paper yet.