Papers
Topics
Authors
Recent
2000 character limit reached

Posterior computation with the Gibbs zig-zag sampler

Published 8 Apr 2020 in stat.CO, math.ST, and stat.TH | (2004.04254v3)

Abstract: An intriguing new class of piecewise deterministic Markov processes (PDMPs) has recently been proposed as an alternative to Markov chain Monte Carlo (MCMC). In order to facilitate the application to a larger class of problems, we propose a new class of PDMPs termed Gibbs zig-zag samplers, which allow parameters to be updated in blocks with a zig-zag sampler applied to certain parameters and traditional MCMC-style updates to others. We demonstrate the flexibility of this framework on posterior sampling for logistic models with shrinkage priors for high-dimensional regression and random effects and provide conditions for geometric ergodicity and the validity of a central limit theorem.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.