Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Manifold Prior (2004.04242v1)

Published 8 Apr 2020 in cs.CV and cs.GR

Abstract: We present a prior for manifold structured data, such as surfaces of 3D shapes, where deep neural networks are adopted to reconstruct a target shape using gradient descent starting from a random initialization. We show that surfaces generated this way are smooth, with limiting behavior characterized by Gaussian processes, and we mathematically derive such properties for fully-connected as well as convolutional networks. We demonstrate our method in a variety of manifold reconstruction applications, such as point cloud denoising and interpolation, achieving considerably better results against competitive baselines while requiring no training data. We also show that when training data is available, our method allows developing alternate parametrizations of surfaces under the framework of AtlasNet, leading to a compact network architecture and better reconstruction results on standard image to shape reconstruction benchmarks.

Citations (15)

Summary

We haven't generated a summary for this paper yet.