Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Keywords Extraction and Sentiment Analysis using Automatic Speech Recognition (2004.04099v1)

Published 7 Apr 2020 in eess.AS, cs.SD, and eess.SP

Abstract: Automatic Speech Recognition (ASR) is the interdisciplinary subfield of computational linguistics that develops methodologies and technologies that enables the recognition and translation of spoken language into text by computers. It incorporates knowledge and research in linguistics, computer science, and electrical engineering fields. Sentiment analysis is contextual mining of text which identifies and extracts subjective information in the source material and helping a business to understand the social sentiment of their brand, product or service while monitoring online conversations. According to the speech structure, three models are used in speech recognition to do the match: Acoustic Model, Phonetic Dictionary and LLM. Any speech recognition program is evaluated using two factors: Accuracy (percentage error in converting spoken words to digital data) and Speed (the extent to which the program can keep up with a human speaker). For the purpose of converting speech to text (STT), we will be studying the following open source toolkits: CMU Sphinx and Kaldi. The toolkits use Mel-Frequency Cepstral Coefficients (MFCC) and I-vector for feature extraction. CMU Sphinx has been used with pre-trained Hidden Markov Models (HMM) and Gaussian Mixture Models (GMM), while Kaldi is used with pre-trained Neural Networks (NNET) as acoustic models. The n-gram LLMs contain the phonemes or pdf-ids for generating the most probable hypothesis (transcription) in the form of a lattice. The speech dataset is stored in the form of .raw or .wav file and is transcribed in .txt file. The system then tries to identify opinions within the text, and extract the following attributes: Polarity (if the speaker expresses a positive or negative opinion) and Keywords (the thing that is being talked about).

Summary

We haven't generated a summary for this paper yet.