Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tail risk inference via expectiles in heavy-tailed time series (2004.04078v4)

Published 8 Apr 2020 in stat.ME, math.ST, and stat.TH

Abstract: Expectiles define the only law-invariant, coherent and elicitable risk measure apart from the expectation. The popularity of expectile-based risk measures is steadily growing and their properties have been studied for independent data, but further results are needed to use extreme expectiles with dependent time series such as financial data. In this paper we establish a basis for inference on extreme expectiles and expectile-based marginal expected shortfall in a general $\beta$-mixing context that encompasses ARMA, ARCH and GARCH models with heavy-tailed innovations. Simulations and applications to financial returns show that the new estimators and confidence intervals greatly improve on existing ones when the data are dependent.

Citations (14)

Summary

We haven't generated a summary for this paper yet.