Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A weighted fractional problem involving a singular nonlinearity and a $L^1$ data (2004.03836v4)

Published 8 Apr 2020 in math.AP

Abstract: In this article, we show the existence of a unique entropy solution to the following problem: \begin{equation} \begin{split} (-\Delta){p,\alpha}su&= f(x)h(u)+g(x) ~\text{in}~\Omega,\ u&>0~\text{in}~\Omega,\ u&= 0~\text{in}~\mathbb{R}N\setminus\Omega,\nonumber \end{split} \end{equation} where the domain $\Omega\subset \mathbb{R}N$ is bounded and contains the origin, $ \alpha\in[0,\frac{N-ps}{2})$, $s\in (0,1)$, $2-\frac{s}{N}<p<\infty$, $sp<N$, $g\in L^1(\Omega)$, $f\in L^q(\Omega)$ for $q\>1$ and $h$ is a general singular function with singularity at 0. Further, the fractional $p$-Laplacian with weight $\alpha$ is given by $$(-\Delta){p,\alpha}su(x)=\text{P. V.}\int_{\mathbb{R}N}\frac{|u(x)-u(y)|{p-2}(u(x)-u(y))}{|x-y|{N+ps}}\frac{dy}{|x|\alpha|y|{\alpha}},~\forall x\in \mathbb{R}N.$$

Summary

We haven't generated a summary for this paper yet.