Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Multi-Shot Network for modelling Appearance Similarity in Multi-Person Tracking applications (2004.03531v1)

Published 7 Apr 2020 in cs.CV

Abstract: The automatization of Multi-Object Tracking becomes a demanding task in real unconstrained scenarios, where the algorithms have to deal with crowds, crossing people, occlusions, disappearances and the presence of visually similar individuals. In those circumstances, the data association between the incoming detections and their corresponding identities could miss some tracks or produce identity switches. In order to reduce these tracking errors, and even their propagation in further frames, this article presents a Deep Multi-Shot neural model for measuring the Degree of Appearance Similarity (MS-DoAS) between person observations. This model provides temporal consistency to the individuals' appearance representation, and provides an affinity metric to perform frame-by-frame data association, allowing online tracking. The model has been deliberately trained to be able to manage the presence of previous identity switches and missed observations in the handled tracks. With that purpose, a novel data generation tool has been designed to create training tracklets that simulate such situations. The model has demonstrated a high capacity to discern when a new observation corresponds to a certain track, achieving a classification accuracy of 97\% in a hard test that simulates tracks with previous mistakes. Moreover, the tracking efficiency of the model in a Surveillance application has been demonstrated by integrating that into the frame-by-frame association of a Tracking-by-Detection algorithm.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
Citations (2)

Summary

We haven't generated a summary for this paper yet.